40 Combination Sum II
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T. Each number in C may only be used once in the combination.
Note:
- All numbers (including target) will be positive integers.
- The solution set must not contain duplicate combinations.
For example, given candidate set [10, 1, 2, 7, 6, 1, 5] and target 8, A solution set is:
[
[1, 7],
[1, 2, 5],
[2, 6],
[1, 1, 6]
]
Solution
class Solution {
public:
int sum(vector<int>& nums) {
int res = 0, n = nums.size();
if ( n == 0 ) return res;
for (int i = 0; i <= n-1; i++ ) res += nums[i];
return res;
}
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
int n = candidates.size();
vector<vector<int>> res;
vector<vector<int>> tmp_res1;
vector<int> tmp;
tmp_res1.push_back(tmp);
sort(candidates.begin(), candidates.begin()+n);
int i = 0, ni, icount;
while ( i <= n-1 ) {
ni = candidates[i];
icount = 0;
while ( i <= n-1 and candidates[i] == ni ) {icount += 1; i += 1;}
int nres = tmp_res1.size();
vector<vector<int>> tmp_res2;
for ( int j = 0; j <= nres-1; j++ ) {
tmp = tmp_res1[j];
int s = sum(tmp);
if ( s == target ) {res.push_back(tmp); continue;}
tmp_res2.push_back(tmp);
for ( int k = 1; k <= icount; k++ ) {
if ( k*ni + s > target ) break;
tmp.push_back(ni);
tmp_res2.push_back(tmp);
}
}
tmp_res1 = tmp_res2;
}
// note to deal with the residual vectors!
int nres = tmp_res1.size();
for ( int j = 0; j <= nres-1; j++ ) {
tmp = tmp_res1[j];
int s = sum(tmp);
if ( s == target ) {res.push_back(tmp); continue;}
}
return res;
}
};
note: pay attention to a lot of details when implementing.
Recursive Solution
class Solution {
public:
void help(vector<int>& candidates, int i0, int target, vector<int> curr, vector<vector<int>>& res) {
if ( target == 0 ) { res.push_back(curr); return; }
int n = candidates.size();
if ( i0 == n ) return;
int inext = i0, num = candidates[i0], icount = 0;
while ( inext < n and candidates[inext] == num ) inext++;
for ( int i = 0; i <= inext - i0; i++) {
help(candidates, inext, target, curr, res);
curr.push_back(num);
target -= num;
if ( target < 0 ) break;
}
return;
}
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
sort(candidates.begin(), candidates.end());
vector<int> curr;
vector<vector<int>> res;
help(candidates, 0, target, curr, res);
return res;
}
};